As Western nations look for ways to reduce their reliance on Russian oil and gas, another aspect of the Ukraine cris꧃is has received less attention: Most of the 32 countries that use nuclear power rely on Russia for some part of their nuclear fuel supply chain.
Nuclear power is a critical part of 🍸many national electricity grids. European countries especially rely on nuclear power, inꦛcluding France, where it produces 69per cent of the nation’s electricity supply, Ukraine (51per cent), Hungary (46per cent), Finland (34per cent) and Sweden (31per cent).
In the U.S., nuclear reactors generate 20per cent of the nation’s power. Many of these countries originally embraced nuclear power to minimize dependence on imported fossil fuels and, more r𝕴ecently, to reduce carbon emissions and improve air quality.
Economic fallout from the war in Ukraine could disrupt access to fuel for the nuclear power industry. We believe that countering Russia's influence will require concerted efforts that balance energy s𒊎ecurity, climate mitigation and a commitment to international law.
A global industry
Around the world, 32 countries operate about 440 commercial nuclear power reactors that generate 10per cent of the world’s electricity supply. Tﷺhe U.S. has 𝐆the most operating reactors (93), followed by France (56) and China (53).
Many nations export nuclear fuel, materials and services. The leading international suppliers are the ꧋U.S., Russia, Europe and China. Several other countries play important roles, including Canada and South ꧟Korea.
Producing nuclear fuel involves five steps:
– Raw uranium ore, which usually c🍒ontওains less then 2per cent uranium, is mined from the ground.
– The ore is milled to separate the uranium🌠 from other materials, yielding a powder 🍌called yellowcake.
ཧ– Yellowcake is chemic𝐆ally converted to gaseous uranium hexafluoride.
– Uranium hexafluoride is processed to increase its concentration of uranium-235, which can be split in reactors to produce large quantities of🐬 energy. U-235 only makes up 0.7per cent of natural uranium; enrichment for commercial reactor fuel increases its concentration, usually up to 5per cent.
– Enriched uranium is fabricated into fꩵuel rods for reactors.
Uranium conversion, enrichment and fabrication are sophisticated technical p🍌rocesses that are handled at a small number of facilities around the world.
Fuels for nucle꧂ar reactors are highly specialized and tied to specific reactor designs. Buying a power reactor from a supplier suchღ as Rosatom, Russia’s state nuclear company, or the French company Framatome, can lead to decadeslong supply dependencies.
All of these factors make nuclear supply chains more complex, less competitive and harder to shift rapidly than other energy types, such as oil and gas. And since key materials and techn🍌ologies for civilian nuclear power can also be used to produce weapon-usable nuclear materials, international nuclear sales are subject to strict export controls and trade restrictions.
Russia as a nuclear supplier
Compared to other mined commodities such as cobalt, world uranium resources are spread reasonably widely. Kazakhstan produces more than 40per cent of the global supply, followed by🉐 Canada (12.6per cent), Australia (12.1per cent) and Namibia (10per cent). Russia is a minor player, producing around 5per cent, while the U.S. and Europe produce less than 1per cent.
However, much of the milled uranium from Kazakhstan travels through Russia before it is exported to global markets. Other parts of the supply chain also route through 𒁃Russia. Only a handful of facilities in the world convert milled uranium into uranium hexafluoride; Russia produced approximately one-third of the 2020 supply, much of it made with uranium from Kazakhstan.
Russia also has 43per ce🌼nt of the global enrichment capacity, followed by Europe (about 33per cent), China (16per cent) and the Uꦬ.S. (7per cent). There is some spare capacity in the U.S. and Europe, and China is expanding.
Before it invaded Ukraine, Russia had a national strategy to increase its nuclear energy exports. It is a leading supplier of nuclear reactors, building plants abroad and then providing their fuel. Its customers include formeꦏr Soviet states and Warsaw Pact members like Ukraine and Hungary, along with new nuclear power users such as Egypt.
Some 16per cent-20per cent of the annual U.S. uranium supply is at least partially sourced from Russia, mainly for enrichment. Many European countries buy converted or enriched Russian uranium, and China is a grow♏ing market for Russian nuclear exports.
If U.S. nuclear trade with Russia is affected by the Ukraine conflict, the most serious impact would be on two planned advanced reactor demonstration projects: the Xe-100 in Washington state and Natrium in Wyoming. These reactors need fuel that is en⛄riched to nearly 20per cent uranium-235, and Russia is currently the world’s only supplier.
Market impacts of the Ukraine crisis
Global uranium prices were low for most of the past decade, hovering between USD20 to USD30 per pound after ꦗthe Fukushima nuclear disaster in Japan. Then in 2021 and early 2022, market speculation and domestic protests in Kazakhstan pushed prices up.
Now♔, the war in Ukraine has driven some trades to almost USD60 per pound, and potentially higheꩲr. Uranium is not openly traded on markets, so not all prices are public.
The Biden administration reportedly is considering nuclear sanctions on Russia. U.S. utilities oppose this step for fear that it would make uranium fuel scarcer and more expensive. Many U.S. nuclear plants are already struggling economical💃ly.
If Russia retaliates against Western pressure by withholding converted or enriched uranium, we estimate that plants in the U.S. and Europe could be affected within 18 to 24 months, based on the amount of advanced notice required for fuel orders. Some U.S. utilities have said they do not expect shortages, but the opacity of the market and long time frames make this hard to predict. Utilities will face higher prices if they turn to Europe, Japan or China for uranium conversion or enrichment servi𓆏ces.
What♎ about uranꦍium supplies? Western producers – notably, Canada and Australia – have large reserves that would be economic to mine at current price levels. And some U.S. politicians, mainly in western states, are calling for more domestic mining.
But this would be coඣntroversial. Over 500 abandoned mines remain from extensive uranium production across the Navajo Nation in Arizona, Utah and New Mexico during the Cold War.
These areas are 🏅still experiencing harmful effects, including envir🦩onmental contamination and claims of mysterious illnesses and cancers.
Opportunities for U.S. leadership Rather than focusing on domestic urani🐟um mining, we see it as a higher priority fo♒r the U.S. to reconsider its enrichment capabilities and policies.
Private companℱies have been reluctant to invest in new enrichment facilities while cheaper alternatives like importing from Russia were available. The Department of Energy is moving forward on a program to fund fuel production for advanced reactors, but it might have to also focus on making fuel for existing U.S. reactors if Ruꦅssia’s supply is interrupted.
In our view, the U.S. should also work to counter Russia’s efforts to export fabricated fuel and reactors. Ukraine is already working with U.S.-based Westinghouse to develop fuel for its Russian-designed reactors that can replace Russian-manufactured fuel. Seven of Ukraine’s 15 reactors already use this fuel, which is fabricated in Sweden. We believe U.S. policy should suppor🦩t similar efforts elsewhere as needed.
Finally, if t𝓡he U.S. and other countrie♔s seek to remake world nuclear supply chains, we believe the nuclear industry should strive to transcend its toxic legacy.
This would require engaging at the start with affected communi🎃ties, securing benefits for them, making project plans more tra♍nsparent and incorporating environmental justice into every project.
𒁏Of course, the first step toward ethical uranium is ensuring that the nuclear power industry is ༒not funding Russia’s war against Ukraine.